Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals

نویسندگان

  • Madhu Kaushik
  • Carole Fraschini
  • Grégory Chauve
  • Jean-Luc Putaux
  • Audrey Moores
چکیده

Cellulose nanocrystals (CNCs) are high aspect ratio nanomaterials readily obtained from cellulose microfibrils via strong acid hydrolysis. They feature unique properties stemming from their surface chemistry, their crystallinity, and their three-dimensional structure. CNCs have been exploited in a number of applica‐ tions such as optically active coatings, nanocomposite materials, or aerogels. CNC size and shape determination is an important challenge and transmission electron microscopy (TEM) is one of the most powerful tools to achieve this goal. Because of the specifics of TEM imaging, CNCs require special attention. They have a low density, are highly susceptible to electron beam damage, and easily aggregate. Specific techniques for both imaging and sampling have been developed over the past decades. In this review, we describe the CNCs, their properties, their applications, and the need for a precise characterization of their morphology and size distribution. We also describe in detail the techniques used to record quality images of CNCs. Finally, we survey the literature to provide readers with specific examples of TEM images of CNCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and Photo-inactivation of cellulose nanocrystals impregnated with meso-tetrakis(4-nitrophenyl)porphyrin

In this study, cellulose nanocrystals (CNC) was prepared and meso-tetrakis(4-nitrophenyl)porphyrin (TNPP) was immobilized on it. The product was identified by techniques of UV-Vis, fourier transform infrared (FT-IR), diffuse reflectance UV-Vis spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The effect of an amount of a loaded porphyrin comp...

متن کامل

Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor

      In this research, TiO2 nanoparticles were synthesized by a simple wet chemical method. TiCl4 was used as precursor in hydrogen peroxideand ethanol. The TiO2 nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and UV-Vis spectrophotome...

متن کامل

Isolation and characterization of cellulose nanocrystals from garlic skin

For the value-added utilization of underutilized agricultural by-products, garlic skin obtained abundantly in the food processing industry has been tested as a new source of cellulosic materials. Cellulose microfibers (CMF) and cellulose nanocrystals (CNC) were isolated from garlic skin fibers by alkali treatment and acid hydrolysis. The crude fiber, CMF, and CNC of garlic skin were characteriz...

متن کامل

Synthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique

     In this study, hydroxyapatite (HA) nanocrystals have been synthesized via chemical precipitation technique. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials and sodium hydroxide solution was used as the agent for pH adjustment. The powder sample was evaluated by techniques such as scanning electron microscope, transmission electron microscope, Fou...

متن کامل

Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber

The aim was to explore the utilization of oil palm mesocarp fiber (OPMF) as a source for the production of cellulose nanocrystals (CNC). OPMF was first treated with alkali and then bleached before the production of CNC by acid hydrolysis (H2SO4). The produced materials were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017